Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506718

RESUMO

Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.


Assuntos
Acinetobacter baumannii , Sais , Biofilmes , Fenóis/farmacologia , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474006

RESUMO

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Assuntos
Lipídeo A , Salmonella typhimurium , Humanos , Animais , Camundongos , Salmonella typhimurium/genética , Lipídeo A/química , Lipopolissacarídeos/química , Virulência , Matriz Extracelular de Substâncias Poliméricas , Células HeLa , Proteínas de Bactérias/genética
3.
Mol Ther Nucleic Acids ; 34: 102053, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37941832

RESUMO

Emerging chemo- and radiotherapy resistance exacerbated the cancer risk and necessitated novel treatment strategies. Although RNA therapeutics against pro-oncogenic genes are highly effective, tumor-specific delivery remains a barrier to the implementation of this valuable tool. In this study, we report a tryptophan-auxotrophic Salmonella typhimurium strain as an onco-therapeutic delivery system with tumor-targeting ability using 4T1 mice breast-cancer model. The receptor-binding cancer antigen expressed on SiSo cell (RCAS1) is a cancer-specific protein that induces the apoptosis of peripheral lymphocytes and confers tumor immune evasion. We designed a long non-coding antisense-RNA against RCAS1 (asRCAS1) and delivered by Salmonella using a non-antibiotic, auxotrophic-selective, eukaryotic expression plasmid, pJHL204. After in vivo tumor-to-tumor passaging, the JOL2888 (ΔtrpA, ΔtrpE, Δasd + asRCAS1) strain exhibited high sustainability in tumors, but did not last in healthy organs, thereby demonstrating tumor specificity and safety. RCAS1 inhibition in the tumor was confirmed by western blotting and qPCR. In mice, JOL2888 treatment reduced tumor-associated macrophages, improved the T cell population, elicited cell-mediated immunity, and suppressed cancer-promoting genes. Consequently, the JOL2888 treatment significantly decreased the tumor volume by 80%, decreased splenomegaly by 30%, and completely arrested lung metastasis. These findings highlight the intrinsic tumor-targeting ability of tryptophan-auxotrophic Salmonella for delivering onco-therapeutic macromolecules.

4.
Dev Comp Immunol ; 149: 105058, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714394

RESUMO

The H9N2 avian influenza virus significantly affects the health of poultry and humans. We identified a prokaryotic and eukaryotic dual-expression vector system, pJHL270, that can provide simultaneous MHC class I and II stimulation of the host immune system, and we designed vaccine antigens by selecting the consensus HA1 sequence and M2e antigens from H9N2 virus circulating in South Korea from 2000 to 2021. The genes were cloned into the pJHL270 vector, and the cloned plasmid was delivered by a live-attenuated Salmonella Gallinarum (SG) strain. The immunity and protective efficacy of the SG-based H9N2 vaccine construct, JOL2922, against avian influenza and fowl typhoid (FT) were evaluated. The Ptrc and CMV promoters conferred antigen expression in prokaryotic and eukaryotic cells to induce balanced Th-1/Th-2 immunity. Chickens immunized with JOL2922 yielded high antigen-specific humoral and mucosal immune responses. qRT-PCR revealed that the strain generated polyfunctional IFN-γ and IL-4 secretion in immunized chickens. Furthermore, a FACS analysis showed increased CD3CD4+ and CD3CD8+ T-cell subpopulations following immunization. Peripheral Blood Mononuclear Cells (PBMCs) harvested from the immunized chickens significantly increased MHC class I and II expression, 3.5-fold and 2.5-fold increases, respectively. Serum collected from the immunized groups had an evident hemagglutinin inhibition titer of ≥6 log2. Immunization reduced the lung viral titer by 3.8-fold within 5 days post-infection. The strain also generated SG-specific humoral and cellular immune responses. The immunized birds all survived a virulent SG wild-type challenge. In addition, the bacterial burden was reduced by 2.7-fold and 2.1-fold in spleen and liver tissue, respectively, collected from immunized chickens. Our data indicate that an attenuated SG strain successfully delivered the dual-expression vector system and co-stimulated MHC class I and II antigen presentation pathways via exogenous and endogenous antigen presentation, thereby triggering a balanced Th-1/Th-2-based immune response and conferring effective protection against avian influenza and FT.

5.
J Adv Res ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37689243

RESUMO

INTRODUCTION: The limitations of conventional cancer therapies necessitate target-oriented, highly invasive, and safe treatment approaches. Hence, the intrinsic anti-tumor activity of Salmonella can offer better options to combat cancers. OBJECTIVES: This study aims to utilize attenuated Salmonella and deliver cytolytic protein cytolysin A (ClyA) under quorum sensing (QS) signaling for precise localized expression in tumors but not in healthy organs. METHODS: The therapeutic delivery strain was imposed with tryptophan auxotroph for selective colonization in tumors by trpA and trpE deletion, and lipid-A and O-antigen were altered by pagL and rfaL deletions using lambda red recombination method. The strain was transformed with the designed QS-controlled ClyA expression vector which was validated by western blot. The in vivo passaged therapeutic strain was used for treatment four times at a weekly interval, with a dose of 5 × 106 CFU/mouse for cancer therapy. RESULTS: The attenuated strain induced minimal endotoxicity-related cytokines TNF-α, IL-1ß, and IFN-γ and exhibited adequate colonization despite earlier exposure in mice. The QS-controlled ClyA expression was confirmed by western blot from bacterial cultures grown at different cell densities. The results demonstrated that the in vivo passaged strain preferentially colonized the tumor after vacating the spleen, liver, and lung, leaving no outward histological scars. The anti-cancer effect of the designed construct was evaluated in the murine CT26 colon cancer model. The expression of ClyA increased tumoricidal activity by 67 % compared to vector control. CONCLUSION: Hence, the anti-tumor effect of the engineered Salmonella strain was improved by ClyA expression via QS activation after achieving the threshold bacterial cell density. Further, immunohistochemical staining of the tumor and other organs corroborated the QS-controlled tumor-specific expression of ClyA. Overall, the results imply that the developed anti-cancer Salmonella has low endotoxicity and QS-controlled expression of ClyA as beneficial safety elements and supports recurrent Salmonella inoculation by O-antigen deficiency.

6.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766369

RESUMO

The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Células HeLa , Transdução de Sinais , Simulação de Acoplamento Molecular , Phlebovirus/genética , Replicação Viral , Serina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
7.
Pharmaceutics ; 15(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37242581

RESUMO

Currently, there are no commercial vaccines or therapeutics against severe fever with thrombocytopenia syndrome (SFTS) virus. This study explored an engineered Salmonella as a vaccine carrier to deliver a eukaryotic self-mRNA replicating vector, pJHL204. This vector expresses multiple SFTS virus antigenic genes for the nucleocapsid protein (NP), glycoprotein precursor (Gn/Gc), and nonstructural protein (NS) to induce host immune responses. The engineered constructs were designed and validated through 3D structure modeling. Western blot and qRT-PCR analyses of transformed HEK293T cells confirmed the delivery and expression of the vaccine antigens. Significantly, mice immunized with these constructs demonstrated a cell-mediated and humoral response as balanced Th1/Th2 immunity. The JOL2424 and JOL2425 delivering NP and Gn/Gc generated strong immunoglobulin IgG and IgM antibodies and high neutralizing titers. To further examine the immunogenicity and protection, we utilized a human DC-SIGN receptor transduced mouse model for SFTS virus infection by an adeno-associated viral vector system. Among the SFTSV antigen constructs, the construct with full-length NP and Gn/Gc and the construct with NP and selected Gn/Gc epitopes induced robust cellular and humoral immune responses. These were followed by adequate protection based on viral titer reduction and reduced histopathological lesions in the spleen and liver. In conclusion, these data indicate that recombinant attenuated Salmonella JOL2424 and JOL2425 delivering NP and Gn/Gc antigens of SFTSV are promising vaccine candidates that induce strong humoral and cellular immune responses and protection against SFTSV. Moreover, the data proved that the hDC-SIGN transduced mice as a worthy tool for immunogenicity study for SFTSV.

8.
Vet Microbiol ; 282: 109759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104940

RESUMO

This study presents the engineering of a less endotoxic Salmonella Typhimurium strain by manipulating the lipid-A structure of the lipopolysaccharide (LPS) component. Salmonella lipid A was dephosphorylated by using lpxE from Francisella tularensis. The 1-phosphate group from lipid-A was removed selectively, resulting in a close analog of monophosphoryl lipid A. We observed a significant impact of ∆pagL on major virulence factors such as biofilm formation, motility, persistency, and immune evasion. In correlation with biofilm and motility retardation, adhesion and invasion were elevated but with reduced intracellular survival, a favorable phenotype prospect of a vaccine strain. Western blotting and silver staining confirmed the absence of the O-antigen and truncated lipid-A core in the detoxified Salmonella mutant. In vitro and in vivo studies demonstrated that the dephosphorylated Salmonella mutant mediated lower pro-inflammatory cytokine secretion than the wild-type strain. The vaccine strains were present in the spleen and liver for five days and were cleared from the organs by day seven. However, the wild-type strain persisted in the spleen, liver, and brain, leading to sepsis-induced death. Histological evaluations of tissue samples further confirmed the reduced endotoxic activity of the detoxified Salmonella mutant. The detoxification strategy did not compromise the level of protective immunity, as the vaccine strain could enhance humoral and cellular immune responses and protect against the wild-type challenge in immunized mice.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella typhimurium , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Feminino , Animais , Camundongos , Camundongos Endogâmicos BALB C , Lipídeo A/metabolismo , Vacinas contra Salmonella/efeitos adversos , Vacinas contra Salmonella/genética , Vacinas contra Salmonella/imunologia , Lipopolissacarídeos/metabolismo , Imunidade Humoral , Imunidade Celular , Biofilmes , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Hidrolases de Éster Carboxílico/genética
9.
J Control Release ; 357: 404-416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044178

RESUMO

The latest omicron variants are emerging with mutations in the receptor binding domain (RBD) that confer immune evasion and resistance against current vaccines. Such variants have raised the peril of future vaccine effectiveness, as leading vaccines target the spike protein. Type-IV hypersensitivity, and other ailments due to the dominant Th1 response by leading vaccines, is also to be resolved. Therefore, vaccine that target diverse SARS-CoV-2 proteins and provide broad-spectrum protection and a balanced Th1 and Th2 response is an indispensable armament against the pandemic. In that prospect, a novel dual expression plasmid pJHL270 was developed and demonstrated the expression of omicron antigens exogenously from Salmonella and endogenously in the host cells. The simultaneous activation of MHC class I and II molecules culminated in a balanced Th1 and Th2 response, which was evident through the upsurge of IgG, IgA antibodies, IgG2a/IgG1 ratio, cytokine responses and CD4+, CD8+ T-lymphocytes. The level of CD44+ cells showed the trigger for Th1 and Th2 balance and memory-cell activation for long-lasting immunity. The level of IFN-γ + cells and neutralizing antibodies signifies the anti-viral response. The vaccine protected the hamsters from BA.5 and BA.2.75 omicron viral-challenge, exhibited a significant reduction in lung viral-load and histopathological lesions. In addition to two-way antigen expression and bilateral immune elicitation, this Salmonella-based vaccine delivery system can be prospectively applied to humans and a broad range of animals as a convenient alternative to viral and chemical vaccine delivery approaches.


Assuntos
COVID-19 , Eucariotos , Animais , Cricetinae , Humanos , SARS-CoV-2 , Salmonella/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Dev Comp Immunol ; 145: 104707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044268

RESUMO

In the present study, lipid-A gene mutants of Salmonella gallinarum (SG) were screened, and the arnT mutant exhibited optimal acidic and oxidative-stress and macrophage-survival. Modifying lipid-A by arnT-deletion resulted in significantly reduced endotoxicity, virulence, and mortality. Therefore, the arnT-deleted vaccine-candidate strain JOL2841 was constructed and demonstrated to be safe due to appropriate clearance by the chicken immune system. The reduced-endotoxicity of JOL2841 was evident from the downregulation of TNFα and IL-1ß inflammatory cytokines, no inflammatory signs in organ gross-examination, and histopathological analysis. The IgY and IgA antibody titres, CD4, and CD8 T-cell population improvements, and IL-4, IL-2, and INFγ expression decipher the profound Th2 and Th1 immunogenicity. Consequently, JOL2841 exhibited prominent protection against wild-type SG challenge, as revealed by organ pathogen-load determination, organ gross-examination, and histopathological examination. Overall, the study represented the first report of arnT deficient SG resulted in negligible endotoxicity, low-virulence, safety and coordinated elicitation of humoral and cell-mediated immune response in chickens.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Febre Tifoide , Animais , Galinhas , Endotoxinas , Febre Tifoide/prevenção & controle , Vacinas contra Salmonella/genética , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella , Imunidade Celular , Lipídeos , Vacinas Atenuadas
11.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297535

RESUMO

Bacteria-mediated cancer therapy has become a topic of interest under the broad umbrella of oncotherapy. Among many bacterial species, Salmonella remains at the forefront due to its ability to localize and proliferate inside tumor microenvironments and often suppress tumor growth. Salmonella Typhimurium is one of the most promising mediators, with engineering plasticity and cancer specificity. It can be used to deliver toxins that induce cell death in cancer cells specifically, and also as a cancer-specific instrument for immunotherapy by delivering tumor antigens and exposing the tumor environment to the host immune system. Salmonella can be used to deliver prodrug converting enzymes unambiguously against cancer. Though positive responses in Salmonella-mediated cancer treatments are still at a preliminary level, they have paved the way for developing combinatorial therapy with conventional chemotherapy, radiotherapy, and surgery, and can be used synergistically to combat multi-drug resistant and higher-stage cancers. With this background, Salmonella-mediated cancer therapy was approved for clinical trials by U.S. Food and Drug Administration, but the results were not satisfactory and more pre-clinical investigation is needed. This review summarizes the recent advancements in Salmonella-mediated oncotherapy in the fight against cancer. The present article emphasizes the demand for Salmonella mutants with high stringency toward cancer and with amenable elements of safety by virulence deletions.

12.
Vet Res ; 53(1): 76, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183131

RESUMO

In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.


Assuntos
Antígenos O , Vacinas contra Salmonella , Animais , Ácido Aspártico , Citocinas , Humanos , Imunoglobulina G , Lipídeo A , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Vacinas Atenuadas
13.
Vet Microbiol ; 274: 109572, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113357

RESUMO

The present study describes creating an attenuated Salmonella Gallinarum (SG) strain with reduced endotoxicity to prevent fowl typhoid. The strain was attenuated by deleting the lon, cpxR, and rfaL virulence-related genes. Endotoxicity was reduced by deleting the pagL open reading frame and replacing it with the lpxE gene derived from Francisella tularencis. Both events, (1) deletion of the pagL and (2) introduction of the lpxE genes, conferred reduced endotoxicity by detoxifying the lipid A structure. The detoxified SG strain (SGVSdt) was well tolerated in 7-day-old chicks when administered orally at 1 × 108 CFU/bird and in 14-day-old birds administered 1 × 107 CFU/bird subcutaneously. Parenteral immunization of detoxified vaccine strain was completely safe in birds and free of environmental contamination. Subcutaneous immunization conferred disease protection and induced humoral and cell-mediated immune responses marked by Th1-skewed patterns similar to those produced by the commercial SG9R vaccine strain. Compared with the SG9R-based vaccine, the SGVSdt construct generated significantly fewer inflammatory TNF-α responses while significantly inducing IFN-γ cytokine levels as an indication of an adaptive antibacterial response. The differentiating infected from vaccinated animals (DIVA) capability was on par with the predecessor SGVS. This study presents an appealing biological strategy to minimize lipid A-mediated endotoxicity without compromising protective efficacy against the SG challenge. Reduced endotoxicity permits the utilization of higher inoculation doses to maximize protection against fowl typhoid.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Febre Tifoide , Animais , Vacinas contra Salmonella/efeitos adversos , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia , Lipídeo A , Endotoxinas , Febre Tifoide/veterinária , Fator de Necrose Tumoral alfa , Estudos Prospectivos , Vacinas Atenuadas , Salmonella/genética , Galinhas , Antibacterianos
14.
Pharmaceutics ; 13(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34959384

RESUMO

Curcumin, a yellow-colored molecule derived from the rhizome of Curcuma longa, has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin. Combining with adjuvants, encapsulating in carriers and formulating in nanoforms, in combination with other bioactive agents, synthetic derivatives and structural analogs of curcumin, have shown increased efficiency and bioavailability, thereby augmenting the range of applications of curcumin. The scope for incorporating biotechnology and nanotechnology in amending the current drawbacks would help in expanding the biomedical applications and clinical efficacy of curcumin. Therefore, in this review, we provide a comprehensive overview of the plethora of therapeutic potentials of curcumin, their drawbacks in efficient clinical applications and the recent advancements in improving curcumin's bioavailability for effective use in various biomedical applications.

15.
Sci Rep ; 10(1): 21975, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319862

RESUMO

Acinetobacter baumannii (AB) is rising as a human pathogen of critical priority worldwide as it is the leading cause of chronic opportunistic infections in healthcare settings and the condition is ineradicable with antibiotic therapy. AB possesses the ability to form biofilm on abiotic as well as biotic surfaces which plays a major role in its pathogenesis and resistance in clinical settings. Hence, the demand for an alternative therapy to combat the biofilm-associated infections is increasing. The present study explored the antibiofilm potential of myrtenol, a bicyclic monoterpene present in various plants against reference and clinical strains of AB. Myrtenol (200 µg/mL) exhibited a strong antibiofilm activity without exerting any harmful effect on growth and metabolic viability of AB strains. Microscopic analyses confirmed the reduction in the biofilm thickness and surface coverage upon myrtenol treatment. Especially, myrtenol was found to be effective in disrupting the mature biofilms of tested AB strains. Furthermore, myrtenol inhibited the biofilm-associated virulence factors of AB strains such as extracellular polysaccharide, cell surface hydrophobicity, oxidant resistance, swarming and twitching motility. Transcriptional analysis unveiled the suppression of the biofilm-associated genes such as bfmR, csuA/B, bap, ompA, pgaA, pgaC, and katE by myrtenol. Notably, myrtenol improved the susceptibility of AB strains towards conventional antibiotics such as amikacin, ciprofloxacin, gentamicin and trimethoprim. Thus, the present study demonstrates the therapeutic potential of myrtenol against biofilm-associated infections of AB.


Assuntos
Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/patogenicidade , Antibacterianos/farmacologia , Monoterpenos Bicíclicos/farmacologia , Biofilmes/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Biológicos , Movimento , Oxidantes/toxicidade , Polissacarídeos/farmacologia , Virulência/efeitos dos fármacos
16.
J Med Microbiol ; 69(11): 1319-1331, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33084565

RESUMO

Introduction. Yersinia enterocolitica is one of the leading food-borne entero-pathogens causing various illnesses ranging from gastroenteritis to systemic infections. Quorum sensing (QS) is one of the prime mechanisms that control the virulence in Y. enterocolitica.Hypothesis/Gap Statement. Vanillic acid inhibits the quorum sensing and other virulence factors related to Y. enterocolitica. It has been evaluated by transcriptomic and Insilico analysis. Therefore, it can be a prospective agent to develop a therapeutic combination against Y. enterocolitica.Aim. The present study is focused on screening natural anti-quorum-sensing agents against Y. enterocolitica. The effect of selected active principle on various virulence factors was evaluated.Methodology. In total, 12 phytochemicals were screened by swarming assay. MATH assay, EPS and surfactant production assay, SEM analysis, antibiotic and blood sensitivity assay were performed to demonstrate the anti-virulence activity. Further, RNA sequencing and molecular docking studies were carried out to substantiate the anti-QS activity.Results. Vanillic acid (VA) has exhibited significant motility inhibition, thus indicating the anti-QS activity with MQIC of 400 µg ml-1 without altering the cell viability. It has also inhibited the violacein production in Chromobacterium violaceum ATCC 12472, which further confirms the anti-QS activity. VA has inhibited 16 % of cell-surface hydrophobicity (CSH), 52 % of EPS production and 60 % of surfactant production. Moreover, it has increased the sensitivity of Y. enterocolitica towards antibiotics. It has also made the cells upto 91 % more vulnerable towards human immune cells. The transcriptomic analysis by RNA sequencing revealed the down regulation of genes related to motility, virulence, chemotaxis, siderophores and drug resistance. VA treatment has also positively regulated the expression of several stress response genes. In furtherance, the anti-QS potential of VA has been validated with QS regulatory protein YenR by in silico molecular simulation and docking study.Conclusion. The present study is possibly the first attempt to demonstrate the anti-QS and anti-pathogenic potential of VA against Y. enterocolitica by transcriptomic and in silico analysis. It also deciphers that VA can be a promising lead to develop biopreservative and therapeutic regimens to treat Y. enterocolitica infections.


Assuntos
Antibacterianos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Ácido Vanílico/farmacologia , Yersinia enterocolitica/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Sangue/microbiologia , Simulação por Computador , Perfilação da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Análise de Sequência de RNA , Transcriptoma , Fatores de Virulência , Yersiniose/tratamento farmacológico , Yersinia enterocolitica/patogenicidade , Yersinia enterocolitica/fisiologia
17.
Microb Pathog ; 138: 103813, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654777

RESUMO

Salmonella enterica Typhi and Paratyphi A are food borne pathogens causing typhoid, which is one of the most important food borne disease in the developing world. S. Typhi and S. Paratyphi A are of much concern as multi drug resistance has been on the rise. The current study is aimed to screen phytochemicals for anti quorum sensing (QS) activity against S. Typhi and S. Paratyphi A. Upon screening with swarming assay, tannic acid (TA) showed highest anti-QS activity with minimal concentration of 400µg/ml. The anti-QS activity of TA was confirmed with C. violaceum ATCC 12,472. TA showed 38-43% and 35-50% of inhibition in cell surface hydrophobicity and EPS production respectively. Through FTIR analysis, it has been observed that EPS of treated cells has a considerable change in protein and peptide. TA has also exhibited drastic reduction in the surfactant production as high as 85-90%. Blood sensitivity and antibiotic sensitivity assay revealed that TA significantly sensitizes the S. Typhi and S. Paratyphi A cells to immune components in human blood and antibiotics. It has reduced the resistance of S. Typhi and S. Paratyphi A cells against amikacin, ampicillin, ciprofloxacin, azithromycin, chloramphenicol and gentamycin, thus revitalized the usage of these antibiotics against drug resistant S. Typhi and S. Paratyphi A infections. The consistency of anti-QS potential of TA was further evaluated and established with another eight clinical isolates of S. Typhi and S. Paratyphi A. Thus TA has been proved as a promising anti QS agent that can be developed as a therapeutic combination against S. Typhi and S. Paratyphi A.


Assuntos
Antibacterianos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella typhi/efeitos dos fármacos , Taninos/farmacologia , Virulência/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Análise Espectral , Taninos/química
18.
RSC Adv ; 9(49): 28678-28687, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529628

RESUMO

Many of the Gram-negative bacteria regulate their virulence through an AHL-mediated quorum sensing (QS) mechanism. Disruption of this signaling mechanism might be a novel strategy to suppress bacterial virulence. In this report, foodborne bacterial isolates were tested for their QS-inhibitory properties using biosensor strain Chromobacterium violaceum CV026 and the extracted potential active components were evaluated for anti-QS and antibiofilm activity against pathogenic bacteria. The cell-free supernatant of Enterobacter xiangfangensis PUFSTI26 inhibited violacein production in the reporter strain and exhibited a significant reduction in extracellular virulence factors like biofilm formation, pyocyanin production, and motility of Pseudomonas aeruginosa. Characterization of the purified active component by gas chromatography-mass spectrometry (GC-MS) flaunted the resemblance of hydrocinnamic acid (HCA). Treatment of HCA exhibited pronounced attenuation of virulence factors. Further, the biofilm inhibitory activity was evidenced by means of confocal laser microscopy, that evidenced the repression of biofilm biomass. In addition, gene quantification analysis revealed that HCA repressed the expression of major QS-regulated genes. In silico studies showed that HCA competitively interacts with LasR receptor protein. These results clearly indicate the anti-virulence properties of HCA extracted from E. xiangfangensis of food origin. This is also the first report of the QS inhibitor activity of HCA.

19.
Microb Pathog ; 110: 66-72, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645774

RESUMO

The genus Malassezia comprises of extremely lipophilic yeasts secreting lipases as a vital factor for survival. They are emerging as opportunistic pathogens in medical microbiology and dermatology by causing recurring and recalcitrant infection. Combinatorial therapy is a constructive way to combat infectious diseases. In that prospect, totally 16 Indian medicinal plants were screened, among which a maximum degree of antimicrobial activity was ascertained in Embelia ribes. Subsequently embelin was identified as the bioactive principle with antagonistic potential by comparative antimicrobial assay and FTIR analysis. The MIC of embelin was determined as 400 µg/ml exhibiting ∼75% of growth inhibition. Further, a fungistatic activity based on anti-lipase potential (65-89%) of embelin has been clearly substantiated by XTT and lipase assay. In addition, embelin exhibited a synergistic effect with the antifungal drug ketoconazole (KTZ) against four different Malassezia spp. with FIC index of 0.5. Therefore, the combinations of embelin and KTZ may represent a promising therapeutic regimen to treat Malassezia infections with subjugated clinical and environmental toxicity. To the best of our knowledge, this is the first report delineating the anti-lipase activity of embelin and in vitro synergistic interaction between embelin and KTZ against Malassezia spp.


Assuntos
Antifúngicos/farmacologia , Benzoquinonas/farmacologia , Cetoconazol/farmacologia , Malassezia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Benzoquinonas/química , Benzoquinonas/isolamento & purificação , Combinação de Medicamentos , Sinergismo Farmacológico , Embelia/química , Humanos , Índia , Lipase/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Malassezia/patogenicidade , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
20.
Biofouling ; 32(4): 397-410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930280

RESUMO

Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 µg ml(-1) + 0.312 µg ml(-1)) was determined to effectively inhibit biofilm formation by P. acnes (80-91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20-26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.


Assuntos
Biofilmes , Ácido Elágico/farmacologia , Infecções por Bactérias Gram-Positivas , Propionibacterium acnes , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Compostos Fitoquímicos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/fisiologia , Resultado do Tratamento , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...